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Abstract
Gradient-dependent approximations to the functional of the kinetic energy of
non-interacting electrons (Ts[ρ]), which reflect various properties of the exact
functional, are considered. For specially constructed pairs of electron densities,
for which the analytic expression for the differences of Ts[ρ] is known, it is
shown that the accuracy of the quantities derivable from a given approximation
to Ts[ρ]: energy differences and their functional derivatives, does not reflect
that of Ts[ρ] itself. The comparisons between the exact values of the kinetic
energy in such cases are proposed as an independent condition/criterion for
appraisal of approximations to Ts[ρ].

PACS number: 31.15.Ew

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the quest for an orbital-free method to study many-electron systems initiated in the works
of Thomas [1] and Fermi [2], an universally applicable approximation to the kinetic energy as
density functional (T [ρ]) remains an unsolved issue. The functional Ts[ρ] [3, 4] of the kinetic
energy of non-interacting electrons is strongly related to this quest. For molecular or atomic
systems, the differences between the two functionals are rather small [5]. Approximations
to Ts[ρ] are not needed in the Kohn–Sham formulation of density functional theory [6, 7]
because of the availability of the Kohn–Sham orbitals. This successful formal framework,
although not orbital-free, could be converted into the orbital-free method if both Ts[ρ] and
the exchange-correlation energy functional could be reasonably approximated by means of
explicit density functionals. Currently, orbital-free methods are not robust enough to be nearly
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as universally applicable as the Kohn–Sham equations based ones [8, 9]. The exchange-
correlation energy functional is a minor component of the total energy, whereas the kinetic
energy is a major one. Whereas even the simplest approximations to the exchange-correlation
energy functional applied within the Kohn–Sham framework lead to a reasonable description
of many important properties of atoms, molecules, and solids, known approximations to Ts[ρ]
used to approximate δTs [ρ]

δρ
in variational orbital-free calculations lead usually to qualitatively

wrong results [9–12]. Although an acceptable approximation to δTs [ρ]
δρ

is the ultimate goal and
an indispensable component of any successful orbital-free computational framework, related
quantities are frequently subject of numerical comparisons instead. Most commonly, the
kinetic energy itself, which is a global quantity, is subject of such analyses [8, 9, 13–15] or the
density of the kinetic energy ts

(
Ts[ρ] = ∫

ts(�r) d�r) [16, 17], which similarly to δTs [ρ]
δρ

is a local
quantity. It has to be underlined, however, that ts is not defined uniquely. For a recent concise
review of strategies to approximate Ts[ρ] and challenges involved see [18]. This makes the
relation between accuracies of t

appr
s and δT

appr
s [ρ]
δρ

derived from a common approximation to

T
appr
s [ρ] less straightforward. Since all quantities derived from Ts[ρ] would be exact if the

approximation to Ts[ρ] were exact, it is tempting to assume that a good approximation to Ts[ρ]
would also lead to good approximations to the related quantities: energy differences such as the
non-additive kinetic energy bi-functional

(
T nad

s [ρA, ρB ] = Ts[ρA +ρB]−Ts[ρA]−Ts[ρB]
)

and

its functional derivatives (
δT nad

s [ρA,ρB ]
δρX

, where X = A or B). In view of the fact that relative errors
in Ts[ρ] obtained from even the best approximations are in the range of 1%, this assumption
should be put to scrutiny. In the present work, we analyse the differences of the kinetic energy
and the associated functional derivatives. The exact numerical values of T nad

s [ρA, ρB] for a
pair of electron densities obtained from a particular partitioning of four-electron density is
used to asses the practical usefulness of several approximations. Focusing the analysis on
T nad

s [ρA, ρB] arises from the following reasons.

– The energy differences are targets in numerical studies.
– Approximations to T nad

s [ρA, ρB] are needed in practice in various types of calculations:
(i) methods based on Hohenberg–Kohn variational principle, which use one-electron
orbitals for all subsystems of the investigated subsystem as the basic descriptors [19, 20]
(subsystem formulation of density functional theory by Cortona [19]); (ii) methods also
based on Hohenberg–Kohn variational principle which, however, use one-electron orbitals
only for a selected subsystem and the total electron density as basic descriptors (orbital-
free embedding [21]); (iii) methods using orbital-free embedding effective potential in
the linear-response density-functional-theory general framework to obtain excited states
of embedded systems [25, 26]; (iv) conventional wavefunction based methods, in which
the orbital-free embedding potential of [21] is used as an addition to the external potential
[27, 28].

– T nad
s [ρA, ρB ] disappears for non-overlapping pairs ρA and ρB . It is possible, therefore,

to construct approximations to this quantity satisfying this additional condition designed
for application in cases where the overlap between ρA(�r) and ρB(�r) is small. For such
approximations, the magnitude of the electron density overlap thus provides the convenient
applicability criterion.

Turning back to the subsystem formulation of density functional theory by Cortona
[19], it can be considered as a possible alternative to Kohn–Sham calculations applying
semi-local functionals in studies of intermolecular interactions. The repartition of the total
electron density into ρA and ρB is the result of variational calculations. If an approximation
to T nad

s [ρA, ρB ] is used instead of the exact functional this repartition is unique although
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it is not for the exact case. Numerical experience shows that semi-local approximations
to T nad

s [ρA, ρB ] lead to such repartition which minimizes the overlap between ρA and ρB .
In the case of weakly bound intermolecular complexes, this repartition corresponds to the
molecules forming the complex. As far as interaction energies and equilibrium geometries
are concerned, local density approximation applied in Kohn–Sham calculations is known to
lead to unsatisfactory results whereas the same approximation applied in the subsystem based
calculations simultaneously for exchange-correlation- and non-additive kinetic components
of the total energy leads to good results in many cases [22, 23]. This is probably the result
of mutual cancellation of errors in the exchange- and kinetic energy contributions to the
interaction energy in the weakly overlapping case. For the same reasons, the dissociation
of such complexes, which are known to be wrongly described by semi-local Kohn–Sham
calculations [24], can be expected to be better described by semi-local subsystem-based
calculations.

Our previous analyses concerned the applicability of several semi-local approximations
to Ts[ρ] in approximating the functional derivatives of T nad

s [ρA, ρB] [29–31]. These studies

showed that there is no correlation between the errors in Ts[ρ] and that of δT nad
s [ρA,ρB ]

δρX
for the

considered approximations. The one with the largest domain of applicability was selected.
In the absence of exact reference data for T nad

s [ρA, ρB ], the origin of the lack of correlation
between the errors of these closely related quantities could not be investigated further. The
present work provides the missing link. Owing to the availability of the exact numerical data
for T nad

s [ρA, ρB], where ρA and ρB are obtained from a particular partitioning of a four-electron
density, the accuracy of T nad

s [ρA, ρB] can be also analysed.
Throughout the text, we use the following convention: the symbols Ts[ρ], T nad

s [ρA, ρB ]

and δT nad
s [ρA,ρB ]

δρA
denote the exact quantities. Approximated quantities indicated by means of the

acronym of the approximation appr (appr = GEA0, GEA2, W, etc). The symbols ρ, ρA, ρB

and ρX are used for unspecified functions. Any other index added to ρ indicates a specific
electron density.

2. Numerical calculations

2.1. Exact reference data for T nad
s [ρA, ρB ]

We consider a spin-compensated four-electron systems, for which the ground-state electron
density is noninteracting pure-state v-representable. Such system can be described by means
of Kohn–Sham equations [6]. Throughout the text, φ1 and φ2 denote the two canonic Kohn–
Sham orbitals i.e. one-electron functions solving Kohn–Sham equations. The orbitals φ1 and
φ2 and the ground-state electron density are linked by a simple relation (ρ(4) = 2|φ1|2 +2|φ2|2).
For a particular partitioning of ρ(4) into two spin-compensated components: ρ(2)

α and ρ
(2)
ᾱ ,

where

ρ(2)
α = α × 2 × |φ1|2 + (1 − α) × 2 × |φ2|2 (1)

and

ρ
(2)
ᾱ = (1 − α) × 2 × |φ1|2 + α × 2 × |φ2|2 (2)

where

0 � α � 1

T nad
s

[
ρ(2)

α , ρ
(2)
ᾱ

]
can be expressed analytically as a consequence of the fact that for all involved

densities the exact analytic expression for Ts[ρ] is available either as the von Weizsäcker
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functional in the case of densities integrating to two electrons or as a sum of two von Weizsäcker
terms for the ground-state density of the whole system [32].

T nad
s

[
ρ(2)

α , ρ
(2)
ᾱ

] =
∫

1

8
f (α) d�r (3)

where

f (α) = ρKS
1 + ρKS

2

ρKS
1 × ρKS

2

× α(1 − α)
∣∣ρKS

1 ∇ρKS
2 − ρKS

2 ∇ρKS
1

∣∣2

α(1 − α)
((

ρKS
1

)2
+

(
ρKS

2

)2)
+ ρKS

1 ρKS
2 (2α2 − 2α + 1)

. (4)

We underline that neither the exact Kohn–Sham effective potential nor the exact ground-
state electron density is required to obtain ρKS

1 and ρKS
2 . Orbital densities ρKS

1 and ρKS
2

derived in calculations using any approximation for the exchange-correlation potential and
any external potential add up to the total electron density, which is pure-state non-interacting
v-representable by construction. Therefore, all relevant quantities Ts

[
ρKS

1 + ρKS
2

]
, Ts

[
ρKS

1

]
,

and Ts

[
ρKS

2

]
are well defined.

2.2. Approximations to Ts[ρ]

In this work, we study the relations between the accuracy of closely related quantities:

Ts[ρ], T nad
s [ρA, ρB ] and δT nad

s [ρA,ρB ]
δρX

obtained using the same approximated functional for the

kinetic energy
(
T

appr
s [ρ]

)
and the definitions of these quantities in the exact case:

T nad(appr)
s [ρA, ρB ] = T appr

s [ρA + ρB] − T appr
s [ρA] − T appr

s [ρB] (5)

δT
nad(appr)
s [ρA, ρB ]

δρA

= δT
appr
s [ρ]

δρ

∣∣∣∣
ρ=ρA+ρB

− δT
appr
s [ρ]

δρ

∣∣∣∣
ρ=ρA

. (6)

The group of considered approximations comprises semi-local functionals depending
only on two quantities: electron density and its gradient. Such functionals are too simple
for the purpose of orbital-free calculations as pointed out by several authors (see [9, 11] for
instance). They are, however, of potential interest in approximating the effective potential in
practice, either in fully variational calculations based on the subsystem formulation of density
functional theory [19] or in partially variational calculations to obtain orbitals embedded in an
orbital-free environment using one-electron equations (equations (20) and (21) in [21]).

Functionals of the following general form are considered:

T appr
s [ρ] =

∫
3

10
(3π2)2/3ρ5/3F appr(s) d�r (7)

where s = |∇ρ|
2ρkF

with kF = (3π2ρ)1/3, whereas the function F appr(s) (enhancement factor)
determines the gradient-dependence in each case:

F GEA0(s) = 1 (8)

F GEA2(s) = 1 +
5

27
s2 = F GEA0(s) +

5

27
s2 (9)

F OL1(s) = 1 +
5

27
s2 + 0.006 77

20

3
(3π2)−1/3s

= F GEA2(s) + 0.006 77
20

3
(3π2)−1/3s (10)

4
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Table 1. The considered approximations to Ts [ρ]. GEA stands for gradient expansion
approximation.

Formal origin Acronym used Reference

Electron gas with constant gradient and W von Weizsäcker [45]
One-electron or two-electron spin compensated systems
uniform electron gas and zeroth order GEA GEA0 Thomas and Fermi [1, 2]
Second-order GEA GEA2 Kirzhnits [46]
Fourth-order GEA (selected terms) E00 Ernzerhof [47]
Sixth-order GEA (selected terms) P92 Perdew [48]
Second-order GEA + scaling properties for higher orders OL1 Ou-Yang and Levy [49]
Second-order GEA + scaling properties for higher orders OL2 Ou-Yang and Levy [49]
Conjointnes conjecture LC94 Lembarki and Chermette [44]

F OL2(s) = 1 +
5

27
s2 +

0.0887

CF

2(3π2)1/3s

1 + 8(3π2)1/3s

= F GEA2(s) +
0.0887

CF

2(3π2)1/3s

1 + 8(3π2)1/3s
(11)

F LC94(s) = 1 + 0.093 907s arcsinh(76.32s) + (0.266 08 − 0.080 9615 e−100s2
)s2

1 + 0.093 907s arcsinh(76.32s) + 0.577 67 × 10−4s4
(12)

F P92(s) = 1 + 88.396s2 + 16.3683s4

1 + 88.2108s2

= F GEA2(s) +
1

27

0.0004s2 + 0.8901s4

1 + 88.2108s2
(13)

F E00(s) = 135 + 28s2 + 5s4

135 + 3s2
= F GEA2(s) +

40

9

s4

135 + 3s2
(14)

F W(s) = 5

3
s2. (15)

Except for T LC94
s [ρ], the analytic form of all considered functional reflects certain exact

properties of Ts[ρ] (see table 1). One of the objectives of the present study, is to determine,
if obeying/violating exact properties affects the quality of the investigated quantities:

T
appr
s [ρ], T nad(appr)

s [ρA, ρB ], and δT nad
s [ρA,ρB ]

δρX
. The functionals T GEA0

s [ρ] and T GEA2
s [ρ]

representing the zeroth- and second-order gradient expansion of Ts[ρ] are considered here
as the basis for comparisons with other approximations. The functionals T OL1

s [ρ], T OL2
s [ρ],

T P92
s [ρ] and T E00

s [ρ] differ from T GEA2
s [ρ] by additional terms representing contributions

due to higher orders. A common property of all the functionals in this group is the correct
uniform electron gas limit. Additionally, the T LC94

s [ρ] and T W
s [ρ] functionals are included in

this survey. The analytic form of T LC94
s [ρ] is based on an ad hoc assumption (‘conjointness

conjecture’ [33]). T LC94
s [ρ] provides a very good approximation to the functional derivative

of T nad
s [ρA, ρB ] as shown in dedicated studies of the accuracy of the corresponding functional

derivative for weakly overlapping pairs ρA and ρB in model systems [29, 30]. T W [ρ]
represents the dominant term in an alternative strategy to approximate Ts[ρ] which is not
based on uniform electron gas but on other systems. T W

s [ρ] is the exact functional for one-
or spin-compensated two-electron systems. Divided by 9, however, it equals the second-order

5
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contribution ( 1
72

|∇ρ|2
ρ

, represented by 5
27 s2 in equation (9)) in the gradient expansion of Ts[ρ].

The atomic or molecular electron densities do not vary slowly and comprise usually more
than two electrons. Therefore, the choice of either T W

s [ρ] or T GEA0
s [ρ] as the starting point

in building up an approximation for Ts[ρ] (λ versus γ controversy [14]) should be verified in
practice as it is made in this work concerning T nad

s [ρA, ρB ].

2.3. The considered four-electron systems

The analytic expression for T nad
s [ρα, ρᾱ] given in equation (3) holds for any pair ρα and ρᾱ

obtained from the proposed decomposition of the electron density in a spin-compensated four-
electron systems. It is worthwhile to note that any external potential and any approximation
to the exchange-correlation potential can be used for this purpose. We underline that, for
each particular choice for the external potential and for the approximation to the exchange-
correlation potential used in the Kohn–Sham equations to obtain the four-electron density, ρKS

1
and ρKS

2 used in equation (3) are not defined uniquely because the two generating Kohn–Sham
orbitals can be subject to an unitary transformation. In view of possible multitude of pairs ρα

and ρᾱ of chemical relevancy, we focus our demonstration of applicability of equation (3) as a
quality criterion for approximations to Ts[ρ] on a small number of cases. They correspond to
various types of intermolecular complexes, in which the overlap between the orbital densities
in such systems varies considerably. We underline that systems, which dissociate into two
spin-compensated two-electron fragments, are representative for a more general situation
as far as the density overlap is concerned. We note that far from molecular centre the
behaviour of the electron density is known to be determined by the highest occupied Kohn–
Sham orbital. Therefore, the density overlap in the case of a sufficiently separated two two-
electron systems is also representative for densities comprising more than two electrons in each
subsystem.

The doubly-occupied pairs of orbitals (φ1 and φ2) used to construct ρKS
1 and ρKS

2 are
derived from Kohn–Sham calculations applying local density approximation for the functional
of the exchange-correlation energy [34–36] and the cc-pVDZ1 [37] basis sets. The considered
external potentials correspond to the following complexes: (i) linear H2–H2 (deq = 6.50 Bohr
and deq(H–H) = 1.4 Bohr [38]), (ii) T-shaped H2–H2 (deq = 6.50 Bohr and deq(H–H) =
1.4 Bohr [38]), (iii) He–He (deq=5.6 Bohr [39]), (iv) linear He–H2 (deq = 6.33 Bohr, deq(H–
H) = 1.4 Bohr [39]), (v) T-shaped He–H2 (deq = 6.33 Bohr, deq(H–H) = 1.4 Bohr [39]),
(vi) linear Li+–H2 (deq = 3.86 Bohr, d(H–H)=1.4 Bohr [40]), (vii) T-shaped Li+–H2 (deq =
3.86 Bohr, d(H–H)=1.4 Bohr [40]), (viii) Li+–He (deq = 3.61 Bohr [41]). deq denotes either
the distance between the two closest atoms from different subsystems in the case of linear
complexes or the distance between the centre of the H2 molecule and the closest atom from
the other subsystem in the case of T-shaped complexes. Throughout the text, the label ‘T’ is
used to indicate the T-shaped arrangement of molecules. The arrangement is linear otherwise.

The numerical results are obtained using the program deMon2K [42] modified for the
purposes of this work. The program parameters are set as follows: GRID FIXED FINE,
SCFTYPE TOL = 10−8, ERIS TOL = 10−14, DIIS OFF, AUXIS(GEN-A4*).

1 Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version
02/25/04, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular
Sciences Laboratory which is part of the Pacific Northwest Laboratory, PO Box 999, Richland, WA 99352, USA, and
funded by the US Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated
by Battelle Memorial Institute for the US Department of Energy under contract DE-AC06-76RLO 1830. Contact
David Feller or Karen Schuchardt for further information, http://www.emsl.pnl.gov/forms/basisform.html, 2004.
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(a) (b)

Figure 1. The two extreme cases of localization of orbital densities (ρA = 2 |φ1|2 and ρB = 2 |φ2|2)
considered in this work: (a) well-localized Kohn–Sham orbitals for Li+-H2 and (b) delocalized
Kohn–Sham orbitals in the H2–H2 complex. In each figure, the lower and upper parts show φ1 and
φ2, respectively.

Table 2. Relative errors of Ts [ρ(4)
0 ] (in %) obtained using various approximations at equilibrium

distance for the considered four-electron systems (for the used acronyms, see table 1).

System W GEA0 GEA2 E00 P92 OL1 OL2 LC94

H2–H2 −0.176 −10.447 0.645 5.277 0.667 1.564 1.287 −0.295
H2–H2-T −0.271 −10.441 0.640 5.232 0.662 1.559 1.283 −0.291
He–He −0.100 −10.536 0.564 4.110 0.587 1.551 1.216 0.193
He–H2 −0.087 −10.517 0.585 4.444 0.607 1.553 1.234 0.053
He–H2-T −0.144 −10.512 0.583 4.415 0.606 1.552 1.233 0.056
Li+–H2 −0.617 −9.880 1.162 4.575 1.184 2.141 1.818 0.742
Li+–H2–T −0.909 −9.822 1.188 4.535 1.210 2.165 1.844 0.785
Li+–He −0.509 −10.061 0.994 4.255 1.016 1.981 1.649 0.653
Average −0.352 −10.277 0.795 4.605 0.817 1.758 1.446 0.384

3. Results and discussions

Among the studied systems are such, where the orbitals φ1 and φ2 are localized in different
regions in real space or such, where both φ1 and φ2 extend over the whole system (see
figure 1). In the former case, the overlap between the orbital densities

(
ρKS

1 and ρKS
2

)
is

small and it diminishes rapidly with increasing intermolecular distance reaching zero at the
dissociation limit, whereas their overlap is strong in the latter one. The accuracy of T

appr
s [ρ],

T
nad(appr)
s [ρA, ρB ] and δT

nad(appr)
s [ρA,ρB ]

δρX
, where the label appr is used to identify one among the

considered approximations listed in table 1, is analysed in separate sections below.

3.1. Kinetic energy: Ts[ρ]

Table 2 collects the relative errors of the kinetic energy calculated using each of the considered
approximate functionals for the considered four-electron systems. The exact values of Ts[ρ]
are obtained analytically using the available Kohn–Sham orbitals.

T GEA0
s [ρ] underestimates systematically Ts[ρ] by about 10%, whereas T GEA2

s [ρ] reduces
this error significantly, which is in line with trends reported in other surveys [5]. As expected,
all gradient-dependent functionals perform better than T GEA0

s [ρ]. It is worthwhile to note,
however, that T GEA2

s [ρ] performs better than the non-empirical functionals of the generalized
gradient approximation form constructed talking into account selected contributions due to

7
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the fourth- and sixth order (T E00
s [ρ] and T P92

s [ρ], respectively). None of the additional terms
derived from scaling conditions present in T OL1

s [ρ] and T OL2
s [ρ] leads to any improvement as

compared to T GEA2
s [ρ]. For the von Weizsäcker functional (T W [ρ]), the errors in Ts[ρ] are

the smallest. This indicates that the electron density in the considered systems deviates only
slightly from the sum of the isolated two-electron components. The T LC94

s [ρ] functional leads
to errors of similar magnitude but opposite sign.

3.2. Kinetic energy differences: T nad
s [ρα, ρᾱ]

In this section, we compare the numerical values of T nad
s [ρα, ρᾱ] calculated by means of the

exact expression (equations (3) and (4)) with their counterparts calculated for the same pairs
of electron densities but using approximated functionals

(
T

nad(appr)
s [ρα, ρᾱ]

)
.

We start the analysis with the small overlap cases i.e. choosing α = 1 and such complexes
for which the orbital densities: ρKS

1 and ρKS
2 are well-separated in space: Li+–H2, Li+–He

and He–H2. In such systems, the overlap between ρA and ρB is small even at equilibrium
intermolecular distance and it decreases rapidly at larger separations. At intermediate
intermolecular distances, the exact condition T nad

s [ρα=1, ρᾱ=0] = 0, which holds for for any
external potential i.e. for any intermolecular distance (see equations (3) and (4)), is violated by
the considered approximations. The numerical values of errors in T

nad(appr)
s [ρα=1, ρᾱ=0] are

non-negligible although they are typically smaller in magnitude than the energy of interaction
between the subsystems. The von Weizsäcker functional, although it leads to the smallest errors
in Ts[ρ] discussed in the previous section, provides the worst approximation to T nad

s [ρA, ρB ].
The analytic forms of T nad

s [ρA, ρB] obtained using the T GEA0
s [ρ] and T W

s [ρ]
approximations read

T nad(GEA0)
s [ρA, ρB ] = CT F

∫ (
(ρA + ρB)5/3 − ρ

5/3
A − ρ

5/3
B

)
d�r (16)

T nad(W)
s [ρA, ρB ] = −1

8

∫ |ρA∇ρB − ρB∇ρA|2
ρAρB(ρA + ρB)

d�r � 0. (17)

Except the for zero-overlap case, neither T nad(GEA0)
s [ρA, ρB ] nor T nad(W)

s [ρA, ρB ] disappear.
T nad(GEA0)

s [ρA, ρB ] is non-negative, whereas T nad(W)
s [ρA, ρB ] is non-positive. Therefore, the

exact condition T nad
s [ρα=1, ρᾱ=0] = 0 cannot be satisfied by neither term if the overlap is

nonzero. Due to non-negativity of T nad(GEA0)
s [ρA, ρA], it can also be used as a convenient

measure of the magnitude of the overlap between ρA and ρB . Indeed, this quantity decreases
rapidly with distance (see the numerical values for Li+–H2, collected in table 3). Since the
GEA0 and von Weizsäcker contributions to T nad

s [ρA, ρA] differ in sign, the second-order
expansion (GEA2) is usually a better approximation to this quantity than GEA0.

All remaining approximations (OL1, OL2, E00, P92 and LC94) comprise the common
non-negative component T nad(GEA0)

s [ρA, ρB ], which disappears only at zero overlap.
In order to discuss the possible improvement (or deterioration) upon T GEA0

s [ρ] of the
numerical values of T nad

s [ρA, ρB ] resulting from introduction of gradient-dependence into
T

appr
s [ρ], we introduce a dimensionless quantity κappr defined as

κappr = T
nad(appr)

s [ρA, ρB ]

T
nad(GEA0)

s [ρA, ρB ]
, (18)

for each considered approximation.
Figure 2 shows the variation of κappr with intermolecular distance for Li+–H2. The results

obtained by means of the von Weizsäcker functional are also included to show the failure
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Figure 2. The effect of introducing gradients to approximate Ts [ρ] on the accuracy of T nad
s [ρA, ρB ]

in Li+–H2 at various Li–H separations (κappr = T
nad(appr)
s [ρA,ρB ]

T
nad(GEA0)
s [ρA,ρB ]

, deq = 3.86 Bohr). See table 1

for acronyms for each approximation. At the exact functional limit, T nad
s [ρA, ρB ] = 0 and κ = 0.

The P92, OL1 and OL2 results are not shown because they could not be distinguished from the
GEA2 ones in the figure.

Table 3. T nad
s [ρα, ρα̃] (in Hartree) with α = 1, obtained using the considered approximations (for

the used acronyms, see table 1) at various distances between Li+ and H2 (deq = 3.86 Bohr). At
α = 1, the exact value of T nad

s [ρα, ρα̃] equals zero.

Dist W GEA0 GEA2 E00 P92 OL1 OL2 LC94

0.500deq −0.392 497 0.237 955 0.194 344 0.024 387 0.194 254 0.195 341 0.196 046 0.232 661
0.625deq −0.224 930 0.101 117 0.076 125 −0.025 457 0.076 073 0.076 548 0.076 851 0.098 270
0.750deq −0.132 602 0.043 362 0.028 628 −0.036 179 0.028 598 0.028 806 0.028 940 0.041 872
0.875deq −0.082 094 0.021 075 0.011 953 −0.032 476 0.011 934 0.012 043 0.012 105 0.020 381
1.000deq −0.051 028 0.010 948 0.005 279 −0.025 509 0.005 267 0.005 330 0.005 358 0.010 693
1.125deq −0.031 313 0.005 616 0.002 137 −0.018 752 0.002 130 0.002 166 0.002 178 0.005 548
1.250deq −0.018 926 0.002 797 0.000 695 −0.013 089 0.000 690 0.000 710 0.000 715 0.002 796
1.375deq −0.011 225 0.001 358 0.000 111 −0.008 701 0.000 108 0.000 118 0.000 121 0.001 376
1.500deq −0.006 517 0.000 649 −0.000 075 −0.005 516 −0.000 077 −0.000 071 −0.000 070 0.000 669
1.625deq −0.003 701 0.000 309 −0.000 102 −0.003 344 −0.000 103 −0.000 100 −0.000 100 0.000 325
1.750deq −0.002 059 0.000 148 −0.000 081 −0.001 947 −0.000 081 −0.000 080 −0.000 080 0.000 160
1.875deq −0.001 125 0.000 071 −0.000 054 −0.001 096 −0.000 054 −0.000 053 −0.000 053 0.000 079
2.000deq −0.000 608 0.000 034 −0.000 033 −0.000 604 −0.000 033 −0.000 033 −0.000 033 0.000 039
2.125deq −0.000 329 0.000 017 −0.000 020 −0.000 331 −0.000 020 −0.000 020 −0.000 020 0.000 019
2.250deq −0.000 182 0.000 008 −0.000 012 −0.000 184 −0.000 012 −0.000 012 −0.000 012 0.000 009
2.500deq −0.000 067 0.000 002 −0.000 005 −0.000 067 −0.000 005 −0.000 005 −0.000 005 0.000 002
2.750deq −0.000 035 0.000 001 −0.000 003 −0.000 034 −0.000 003 −0.000 003 −0.000 003 0.000 001
3.000deq −0.000 023 0.000 001 −0.000 002 −0.000 023 −0.000 002 −0.000 002 −0.000 002 0.000 001
3.500deq −0.000 011 0.000 000 −0.000 001 −0.000 011 −0.000 001 −0.000 001 −0.000 001 0.000 000
4.000deq −0.000 004 0.000 000 −0.000 000 −0.000 004 −0.000 000 −0.000 000 −0.000 000 0.000 000
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Figure 3. The effect of introducing gradients to approximate Ts [ρ] on the accuracy of T nad
s [ρA, ρB ]

in Li+–He at various Li–He separations (κappr = T
nad(appr)
s [ρA,ρB ]

T
nad(GEA0)
s [ρA,ρB ]

, deq = 3.61 Bohr). See table 1

for acronyms for each approximation. At the exact functional limit, T nad
s [ρA, ρB ] = 0 and κ = 0.

The P92, OL1 and OL2 results are not shown because they could not be distinguished from the
GEA2 ones in the figure.

of this approximation. The T nad
s [ρA, ρB] values derived using the T OL1

s [ρ], T OL2
s [ρ], T P92

s [ρ]
and T GEA2

s [ρ] functionals are indistinguishable. Since all these functionals comprise the
second-order component

(
T GEA2

s [ρ]
)
, the above results indicate that the beyond-second-order

terms in T OL1
s [ρ], T OL2

s [ρ] and T P92
s [ρ] do not contribute noticeably to T nad

s [ρA, ρB ]. The E00
approximation leads, however, to qualitative different behaviour. At small inter-subsystem
distances, the numerical values of T nad

s [ρA, ρB ] are even better than those obtained using either
T GEA0

s [ρ] or T GEA2
s [ρ]. The errors increase, however, rapidly with decreasing overlap (inter-

subsystem distance). Comparing the GEA2, E00 and P92 results shows that the contributions
to T nad

s [ρA, ρB ], which are derived from the gradient-dependent terms in the fourth- and sixth-
order in gradient expansion, cancel each other.

The GEA2, OL1, OL2 and P92 approximations improve upon GEA0 due to the common
GEA2 term, for the reasons discussed before (opposite signs). Unfortunately, at very small
overlaps the negative component due to the von Weizsäcker contribution prevails leading to
negative errors in T nad

s [ρA, ρB ]. The magnitude of this negative contribution is only slightly
(at most 0.0001 Hartree) larger than that due to GEA0.

The LC94 way of including gradients does not lead to better results than local density
approximation (the numerical values of κLC94 are close to 1). The distinct feature of T LC94

s [ρ] is
that performs rather uniformly in approximating T nad

s [ρA, ρB ] in the whole range of considered
ρA–ρB overlaps.

The results for other cases of well-separated Kohn–Sham orbitals show similar trends to
those for Li+–H2 (see figures 3 and 4 for Li+ He and He–H2).

The results for weakly overlapping ρA and ρB indicate that local density approximation is
a good starting point to approximate T nad

s [ρA, ρB]. In the second order, the numerical values

10
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Figure 4. The effect of introducing gradients to approximate Ts [ρ] on the accuracy of T nad
s [ρA, ρB ]

in He–H2 at various He–H2 separations (κappr = T
nad(appr)
s [ρA,ρB ]

T
nad(GEA0)
s [ρA,ρB ]

, deq = 6.33 Bohr). See table 1

for acronyms for each approximation. At the exact functional limit, T nad
s [ρA, ρB ] = 0 and κ = 0.

The P92, OL1 and OL2 results are not shown because they could not be distinguished from the
GEA2 ones in the figure.

of T nad
s [ρA, ρB ] are usually better than those due to the zeroth order. This improvement is,

however, not universal because a systematic failure occurs at very small overlaps (negative
contributions due to the second order). Going beyond the second order by means of taking into
account selected higher order contributions does not solve this problem. They are numerically
negligible (OL1, OL2, P92) or lead to even faster deterioration of the numerical values of
T nad

s [ρA, ρB] with decreasing overlap between ρA and ρB (the E00 case).
In the subsequent part, strongly overlapping pairs ρA and ρB are considered. In H2–H2

or He–He, the Kohn–Sham orbitals extend over the same regions in space (see figure 1). For
Li+–He, Li+–H2 and He–H2, the initially well-separated orbital densities ρKS

1 and ρKS
2 are

mixed using fractional values of the mixing factor α. In the strong overlap cases, the von
Weizsäcker functional represents a qualitative improvement over local density approximation
as indicated by the numerical values of κW which are close to zero (see figures 5 and 6).
The T E00

s [ρ] functional also leads to better results than T GEA0
s [ρ] but this improvement is

less significant. The beyond-second-order contributions due to the special terms in OL1,
OL2 and P92 approximations do not contribute to T nad

s [ρA, ρB ] noticeably. Moreover, the
similarity between the GEA0 and GEA2 results indicates that the second-order contribution to
T nad

s [ρA, ρB] is also negligible if the densities ρA and ρB overlap significantly. The absolute
errors in T nad

s [ρα, ρᾱ] obtained by means of the T LC94
s [ρ] functional are very similar.

According to equation (4), for 0.0 � α � 0.5, T nad
s [ρα, ρᾱ] is positive and monotonic

function of α reaching the maximum at α = 0.5 and this dependence is symmetric(
T nad

s [ρα, ρᾱ] = T nad
s [ρᾱ, ρα]

)
. The dependence of T nad

s [ρα, ρᾱ] on α cannot be properly
accounted for by means of the considered functionals. Compared to the exact results, a
strong overestimation of T

nad(appr)
s [ρ0.5, ρ0.5] takes place for all except the T W

s [ρ] functional.
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Figure 5. The effect of introducing gradients to approximate Ts [ρ] on the accuracy of T nad
s [ρA, ρB ]

in H2–H2 at various H2–H2 separations (κappr = T
nad(appr)
s [ρA,ρB ]

T
nad(GEA0)
s [ρA,ρB ]

, deq = 6.50 Bohr). See table 1

for acronyms for each approximation. At the exact functional limit, T nad
s [ρA, ρB ] = 0 and κ = 0.

The P92, OL1 and OL2 results are not shown because they could not be distinguished from the
GEA2 ones on the figure.

Table 4. T nad
s [ρα, ρα̃] (in Hartree) obtained using the considered approximations (for the used

acronyms, see table 1) and mixing of orbitals densities at equilibrium distance for Li+–H2. deq =
3.86 Bohr).

α Exact W GEA0 GEA2 E00 P92 OL1 OL2 LC94

1.00 0.000 000 −0.051 028 0.010 948 0.005 279 −0.025 509 0.005 267 0.005 358 0.005 330 0.010 693
0.99 0.012 659 −0.038 369 0.130 517 0.126 254 0.083 832 0.126 245 0.127 198 0.127 192 0.136 397
0.90 0.032 249 −0.018 779 1.045 575 1.043 488 0.953 536 1.043 480 1.050 966 1.050 357 1.082 088
0.80 0.041 685 −0.009 342 1.807 585 1.806 547 1.694 367 1.806 538 1.819 451 1.817 914 1.863 410
0.70 0.047 136 −0.003 891 2.338 380 2.337 948 2.213 444 2.337 938 2.354 624 2.352 321 2.406 129
0.60 0.050 087 −0.000 941 2.652 527 2.652 422 2.521 410 2.652 412 2.671 328 2.668 537 2.726 910
0.50 0.051 027 −0.000 000 2.756 584 2.756 584 2.623 520 2.756 573 2.776 228 2.773 271 2.833 106

The errors in T nad
s [ρα, ρᾱ] obtained using any approximation comprising the term derived

from local density approximation (GEA0, GEA2, OL1, OL2, E00, P92) increase rapidly with
increasing α (see tables 4 and 5). The absolute errors in T nad

s [ρα, ρᾱ] obtained using the von
Weizsäcker functional are the smallest among the considered approximations but their sign is
wrong. It can be shown easily that T nad(W)

s [ρα, ρᾱ] − T nad
s [ρα, ρᾱ] = T nad(W)

s

[
ρKS

1 , ρKS
2

]
i.e.

the error in T nad
s [ρα, ρᾱ] is α-independent for this functional. The numerical results confirm

the above relation within 1µ Hartree, which reflects the accuracy of the numerical integration
in the procedures applied in this work. Similar trends occur for other systems, for Li+–H2:
T nad

s [ρ0.5, ρ0.5] = 0.051 027 Hartree (exact result), T nad(GEA2)
s [ρ0.5, ρ0.5] = 2.756 584 Hartree
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Figure 6. The effect of introducing gradients to approximate Ts [ρ] on the accuracy of T nad
s [ρA, ρB ]

in He–He at various He–He separations (κappr = T
nad(appr)
s [ρA,ρB ]

T
nad(GEA0)
s [ρA,ρB ]

, deq = 5.60 Bohr). See table 1

for acronyms for each approximation. At the exact functional limit, T nad
s [ρA, ρB ] = 0 and κ = 0.

The P92, OL1 and OL2 results are not shown because they could not be distinguished from the
GEA2 ones on the figure.

Table 5. T nad
s [ρα, ρα̃] (in Hartree) obtained using the considered approximations (for the used

acronyms, see table 1) and mixing of orbitals densities at equilibrium distance for H2–H2. deq =
6.50 Bohr.)

α Exact W GEA0 GEA2 E00 P92 OL1 OL2 LC94

1.00 0.000 000 −0.003 773 0.711 094 0.710 674 0.662 891 0.710 671 0.715 651 0.714 744 0.731 268
0.99 0.000 722 −0.003 050 0.711 098 0.710 759 0.663 637 0.710 756 0.714 829 0.715 736 0.731 272
0.90 0.002 252 −0.001 521 0.711 136 0.710 967 0.665 369 0.710 964 0.715 943 0.715 037 0.731 301
0.80 0.003 012 −0.000 761 0.711 169 0.711 084 0.666 289 0.711 081 0.716 061 0.715 155 0.731 330
0.70 0.003 455 −0.000 318 0.711 192 0.711 157 0.666 829 0.711 154 0.716 133 0.715 227 0.731 351
0.60 0.003 696 −0.000 077 0.711 206 0.711 197 0.667 119 0.711 195 0.716 174 0.715 268 0.731 364
0.50 0.003 773 −0.000 000 0.711 210 0.711 210 0.667 212 0.711 208 0.716 187 0.715 281 0.731 369

and T nad(W)
s [ρ0.5, ρ0.5] = 0, whereas for He–H2: T nad

s [ρ0.5, ρ0.5] = 0.003 353 Hartree (exact
result), T nad(GEA2)

s [ρ0.5, ρ0.5] = 1.269 748 Hartree and T nad(W)
s [ρ0.5, ρ0.5] = 0.

In all cases, where ρA and ρB overlap strongly any approximate functional based on
gradient expansion approximation is shown to fail qualitatively in approximating T nad

s [ρA, ρB ]
due to the zeroth order. For instance, local density approximation leads to the error in
T nad

s [ρA, ρB] equal to 0.711 Hartree for H2–H2 at equilibrium geometry at α = 1, which
represents a significant part (about 30%) of the kinetic energy of the isolated H2 molecule. The
von Weizsäcker functional leads to significantly smaller errors in T nad

s [ρA, ρB ] (the magnitude
reaching 0.004 Hartree in the same case and the negative sign). This significant reduction of
errors indicates that the von Weizsäcker functional provides probably a better starting point
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to construct approximations to T nad
s [ρA, ρB ] than local density approximation for strongly

overlapping pairs ρA and ρB .

3.3. The functional derivative: δT nad
s [ρA,ρB ]

δρA

The functional derivative δT
nad(appr)
s [ρA,ρB ]

δρX
(�r) is a local quantity. It corresponds to one of

the components of the effective potential in one-electron equations for embedded orbitals
[21]. Opposite to the global quantities discussed so far such as Ts[ρ] and T nad

s [ρA, ρB ], for
which exact reference values could be obtained, no exact reference potential is available
for the considered systems. We note, however, that the electron density

(
ρ

(4)
0

)
derived

from the Kohn–Sham calculations represents also the total electron density obtained from
a coupled pair of two sets of coupled one-electron equations for embedded orbitals

(equations (20) and (21) in [21]) provided the δT
nad(appr)
s [ρA,ρB ]

δρX
(�r) component of the effective

potential in these equations is exact. Below, we denote the pair of electron densities derived

from such equations as ρKSCED
A and ρKSCED

B . If an approximation is used for δT
nad(appr)
s [ρA,ρB ]

δρX
(�r),

the relation ρ
(4)
0 (�r) = ρ

KSCED(appr)
A (�r) + ρ

KSCED(appr)
B (�r) does not necessary hold and the

differences between ρ
(4)
0 and ρ

KSCED(appr)
A + ρ

KSCED(appr)
B can be used as indicators of quality of

the applied used approximation [29–31]. It is convenient to discuss the differences between
these electron densities using a global quantity M defined as

Mappr = 1

N

√∫ (
ρ

(4)
0 (�r) − (

ρ
KSCED(appr)
A (�r) + ρ

KSCED(appr)
B (�r)))2

d�r, (19)

where N = 4 in the present work.
For the exact functional:

Mexact = 0. (20)

It is worthwhile to note that ρ
KSCED(appr)
A and ρ

KSCED(appr)
B are not the same as the orbital

densities discussed in the previous section because they are obtained from different equations.
All the considered approximations satisfy the exact limit

(
T nad

s [ρA, ρB ] = 0
)

at zero overlap

between ρA and ρB . Therefore, possible errors in δT
nad(appr)
s [ρA,ρB ]

δρX
should be looked for at small

inter-subsystem distances, for which the overlap between ρ
KSCED(appr)
A and ρ

KSCED(appr)
B is large.

Indeed, numerical values of Mappr confirm such behaviour as shown in figures 7 and 8 for two
representative cases of Li+–H2 and H2–H2. For different approximations, the deterioration

of δT
nad(appr)
s [ρA,ρB ]

δρX
with increasing overlap does not start at the same inter-subsystem distance.

GEA0 appears to be the best as the critical point, at which M starts a rapid increase, occurs at
the shortest inter-subsystem distances. LC94 results resemble closely the GEA0 ones. Other
approximations are usually worse (increase in Mappr). In the case of Li+–H2 (see figure 7)

and other systems comprising Li+ [43], GEA2 leads to larger errors in δT
nad(appr)
s [ρA,ρB ]

δρX
then

GEA0. For charged systems, a significant modification of the electron density of isolated
subsystems can be expected to occur as the results of complexation. Since the changes of
the electron density are determined by potentials, the electron density in such systems is

prone to flaws of the approximation used for δT nad
s [ρA,ρB ]

δρX
. The deterioration of δT nad

s [ρA,ρB ]
δρX

,
which follows replacing GEA0 by GEA2, is in line with similar trends reported for other
systems characterized by large complexation induced changes of electron density [31]. It is
probably the result of the spurious negative values T nad(GEA2)

s [ρA, ρB] at small ρA-ρB overlaps.
Interestingly, for non-polar systems GEA0 and GEA2 lead to very similar dependence on M
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Figure 7. The effect of errors in δT nad
s [ρA,ρB ]

δρX
for approximations to Ts [ρ] given in table 1 on

the total electron density obtained from variational calculations for Li+–H2 at various distances
d(Li–H) (deq = 3.86 Bohr). For the definition of measure M, see text.
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Figure 8. The effect of errors in δT nad
s [ρA,ρB ]

δρX
for approximations to Ts [ρ] given in table 1 on the

total electron density obtained from variational calculations for H2–H2 at various distances d(H–H)
(deq = 6.50 Bohr). For the definition of measure M, see text.
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on inter-subsystem distance as shown in figure 8 for H2–H2 and [43] for other systems. It is
worthwhile to recall that all four approximations to Ts[ρ]: GEA2, OL1, OL2 and P92, lead
to almost indistinguishable values of T nad

s [ρA, ρB ] indicating that the beyond-second-order
contributions to this quantity are negligible. Differences in Mappr indicate, however, that
the functional derivatives of the corresponding terms are not negligible. These additional
components of the potential are, however, not capable to correct the errors introduced by

the contribution to δT nad
s [ρA,ρB ]

δρX
due to the von Weizsäcker terms in the second order. Other

approximations (W, E00) lead to even worse approximations to δT nad
s [ρA,ρB ]

δρX
.

4. Conclusions

In this work, we demonstrate that using a given approximation to Ts[ρ] to derive related
quantities (energy differences and their derivatives) leads to errors, which do not correlate
with those of the kinetic energy itself. Although, all quantities derivable from a given
approximate expression for Ts[ρ] would become also exact if this expression were exact,
the lack of correlation along the series

Ts[ρ] −→ T nad
s [ρA, ρB ] −→ δT nad

s [ρA, ρB ]

δρX

indicates that a dedicated analysis of these quantities is not redundant because the known
approximations to Ts[ρ] are very unsatisfactory. Therefore, we propose the analytic relations
for T nad

s [ρα, ρα̃] valid for four-electron systems to be use as an additional criterion to be applied
in development of approximations to Ts[ρ]. Especially the condition T nad

s [|φ1|2, |φ2|2] = 0
(where φ1 and φ2 are Kohn–Sham orbitals) is easily applicable. This condition holds for both
the exact Kohn–Sham orbitals and orbitals derived from numerical calculations applying an
approximate exchange-correlation potential in a closed-shell four-electron system. Although
the above lack of correlation was demonstrated for gradient-dependent approximations only,
the fact that enforcing various exact properties of the exact functional on the approximate
ones leads to surprising behaviour of errors suggests that this criterion might be useful also in
the development of approximations to Ts[ρ] which depends on other quantities than electron
density and its gradient.

Comparisons between the reference results corresponding to exact quantities T nad
s [ρA, ρB ]

and δT nad
s [ρA,ρB ]

δρX
with those obtained using approximate functionals in model four-electron

systems allow us to address several issues of relevance to numerical simulations based
on methods, which hinge on easy-to-calculate approximations to T nad

s [ρA, ρB] such as the
gradient-dependent ones considered in this work. These issues are addressed below.

Domain of applicability of gradient-dependent approximations to T nad
s [ρA, ρB ]. For strongly

overlapping pairs ρA and ρB , all considered approximations fail to yield T nad
s [ρA, ρB ] and

δT nad
s [ρA,ρB ]

δρX
of any practical value. The functionals comprising the zeroth-order gradient

expansion term lead to significantly overestimated numerical values of T nad
s [ρA, ρB ] (the

errors reaching almost the order of magnitude of the kinetic energy itself). The von
Weizsäcker functional leads to significantly smaller errors in T nad

s [ρA, ρB ] but the quality
of the corresponding functional derivatives is worse. For large overlaps, the development

of an acceptable approximation to T nad
s [ρA, ρB ] (and δT nad

s [ρA,ρB ]
δρX

) represent a task, which is

comparable in difficulty to that in the Ts[ρ] (and Ts [ρ]
δρ

) case.
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If the overlap between ρA and ρB is small, as in the case the monomers in an intermolecular
complex in the vicinity of the equilibrium geometry, the situation is less grim. The exact
condition: T nad

s [ρA, ρB ] = 0 at zero overlap is satisfied by all functionals considered
in the present work by construction. In this simple way, the correct limit at infinitely
separated subsystems is obeyed. At small but nonzero overlaps, already the local density
approximation (zeroth-order gradient expansion) provides a good approximation to both

T nad
s [ρA, ρB] and δT nad

s [ρA,ρB ]
δρX

. Further improvements are possible by means of introduction of
gradient-dependence.

The starting point in constructing approximation to T nad
s [ρA, ρB ]—λ versus γ controversy.

The numerical results indicate that the local density approximation (exact for the uniform
electron gas) rather than von Weizsäcker functional (exact for one- or spin-compensated two-
electron systems) is more useful as the starting point in approximating both T nad

s [ρA, ρB ] and
δT nad

s [ρA,ρB ]
δρX

if the overlap between ρA and ρB is not significant. At large overlaps, the situation
is reverse.

Going beyond local density approximation. Compared to local density approximation, the
gradient-dependent contributions due to the second order do not affect the accuracy of

T nad
s [ρA, ρB] and δT nad

s [ρA,ρB ]
δρX

in a uniform way. The next to zeroth-order term in gradient

expansion is proportional to s2
(
s = |∇ρ|

2ρkF

)
. Reduced density gradients s are small near

the nuclei, where the electron density is large, whereas they diverge far from the nuclei
due to the exponential decay of the electron density. The fact that the numerical values of
T nad

s [ρA, ρB] improve noticeably if s2-dependent term is included in the case of intermediate
overlaps between ρA and ρB indicates that the presence of this term is desired. However, the
same term leads to negative values of T nad

s [ρA, ρB ] at the smallest overlaps. In variational
calculations, artificial attracting of electron density to regions with very small overlap might
lead to problems. Indeed, the effect of s2-dependent contributions on the accuracy of
δT nad

s [ρA,ρB ]
δρX

is erratic as compared to local density approximation. This flaws of the second-
order gradient expansion approximation are not corrected by such terms due to higher orders
in the gradient expansion, which are derived from either scaling considerations or take into
account higher powers of s. A pragmatic solution to this problem, proposed in [29, 30] is
based on cutting off smoothly the contributions to Ts[ρ] due to large s. The enhancement
factor in the kinetic functional by Lembarki and Chermette [44] was used for this purpose.
The present study confirms the usefulness of this Ansatz. Moreover, owing to the availability
of exact values of T nad

s [ρA, ρB ], it is shown that T LC94
s [ρ] appears to be the most robust

among gradient-dependent functionals in approximating simultaneously all three associated

quantities: Ts[ρ], T nad
s [ρA, ρB] and δT nad

s [ρA,ρB ]
δρX

. Compared to local density approximation,

the accuracy of T LC94
s [ρ] is better, whereas T nad(LC94)

s [ρA, ρB] and δT
nad(LC94)
s [ρA,ρB ]

δρX
are about

the same. This indicates that improvements are still possible within the group of gradient-
dependent approximations applied for small ρA–ρB overlaps.

Importance of enforcing exact properties Ts[ρ]. The effect of enforcing selected exact
properties of the functional Ts[ρ] (GEA2, OL1, OL2, E00, and P92 approximations)
on the accuracy of the related quantities is not systematic along the series Ts[ρ] −→
T nad

s [ρA, ρB] −→ δT nad
s [ρA,ρB ]

δρX
in the case of small overlaps between ρA and ρB , i.e. in the most

promising domain of applicability of gradient-dependent approximations. All the functionals
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in this group are known to approximate Ts[ρ] better than zeroth-order gradient expansion.
Unfortunately, these improvements are not passed on to T nad

s [ρA, ρB ] and subsequently to
δT nad

s [ρA,ρB ]
δρX

in a systematic way. In particular, second-order gradient expansion leads to

improvements in T nad
s [ρA, ρB] in most cases but it does not improve δT nad

s [ρA,ρB ]
δρX

—worsening
it even in some cases. Similar problems in using the second-order gradient expansion to
approximate δTs [ρ]

δρ
were reported [12]. The fact that the second-order expansion affects

the accuracy of T nad
s [ρA, ρB ] and δT nad

s [ρA,ρB ]
δρX

in erratic way is attributed to the imbalance
between the positive and negative errors due to zeroth- and second-order terms in the gradient
expansion, which leads to negativity of T nad

s [ρA, ρB ] at the smallest overlaps. The higher
orders terms derived from either scaling considerations (the T OL1

s [ρ] and T OL2
s [ρ] functionals)

or taking into account higher powers of density gradients present in the gradient expansion
approximation up to sixth order

(
T P92

s [ρ]
)

do not affect T nad
s [ρA, ρB ] noticeably although they

affect δT nad
s [ρA,ρB ]

δρX
. They cannot, however, compensate the errors due to the second-order term

in gradient expansion. The fourth-order-gradient-expansion-approximation based functional

T E00
s [ρ] performs rather poorly. It leads to a deterioration of the accuracy of δT nad

s [ρA,ρB ]
δρX

and

rather erratic effect on the accuracy of T nad
s [ρA, ρB ].
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